
Page 1 Euclid: Supporting Collaborative Argumentation with Hypertext

Euclid: Supporting Collaborative
Argumentation with Hypertext

Bernard Bernstein

Department of Computer Science
University of Colorado at Boulder

Boulder, Colorado 80309-0430
bernard@cs.colorado.edu

Abstract

Many books and papers are written collaboratively across great distances and over long
periods of time. Lately, research has been focusing on real–time collaboration, but little
has been done to provide a means to share reasoning like that used in research
collaboration. Euclid is a collaborative hypertext system for creating and analyzing
reasoned discourse over large spans of distance and time. A Euclid argument may
represent a complete argument from a single individual or from many participants with
any number of perspectives. As a writing tool, Euclid allows users to fully analyze the
logical structure of their arguments to create a clear case when putting it on paper.

1. Introduction

In the past few years, researchers have been
studying schemes to represent reasoned discourse.
Traditionally, arguments are represented on the
printed page sequentially. In the 1950’s, Toulmin
suggested a graphical representation for
argumentation which follows a strict convention
(Toulmin, 1958). In recent times, researchers have
been using computers to implement Toulmin and
other graphical representations. The latest
systems provide practical methods for
manipulating discourse. This paper discusses a
highly usable tool for collaboratively developing
and analyzing reasoned discourse with a user–
centered philosophy.

The Euclid project addresses two major areas of
modern computer science: hypertext and computer
supported collaborative work. It is a hypertext
system because it supports network–based
structuring of nodes. Links between nodes may be
traversed to discern the structure of the network.
As a collaborative application, it allows several
users to work together, share ideas, and create
networks. Users contribute to the overall structure

as individuals or as part of a group.

One can define Euclid as a visualization tool. It
provides a framework in which to represent

reasoning visually. Visualization tools
represent complex concepts in such a way that the
complexity is hidden by a metaphor which is easier
to comprehend. Euclid allows users to create
arguments visually, constructing branches of an
argument that are displayed like branches on a
tree. These branches can be climbed to search for
meanings within the structure.

A figure in a paper, which is a two dimensional
entity, can usually clarify a concept significantly
faster than describing the same concept in words.
Authors insert pictures into documents to
illustrate ideas because “a picture is worth a
thousand words.” Similarly, a picture of an
argument is valuable for the comprehension of its
content.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 1

Page 2 Euclid: Supporting Collaborative Argumentation with Hypertext

1.1. Hypertext Defined

Traditional writing is sequential (Nielsen, 1990).
Each sentence is succeeded by at most one other
sentence in a linear structure. We are accustomed
to this one–dimensional format, but we are also
very restricted by it. The order of the sequential
document is posed by the author for a specific
audience. Since any member of the reading
audience may have different background
knowledge than any other member, some readers
may have a better understanding of the document
than others. A document which does not use a
sequential ordering, one which may be read in
various orders, could appeal to its audience at the
level of each individual.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 2

Page 3 Euclid: Supporting Collaborative Argumentation with Hypertext

Hypertext is the concept of ordering text
nonsequentially. A hypertext document is
organized in multiple dimensions. When reading a
hypertext document, an individual reads a piece of
text, and then may choose several directions in
which to continue to read. The Euclid system
provides authors and their audiences a
nonsequential platform in which to write and read
reasoned discourse.

1.2. Long–term Collaboration

There are several levels of collaboration. Real–time
collaboration is for tightly coupled tasks, such as
making a business decision between employees
(Schrage, 1990). Another type of collaboration is
long–term collaboration, which is used for tasks
which are done primarily by independent people,
with checkpoints when they collaborate briefly to
discuss their results. In academia, or the research
community, most work is done by individuals, and
then the ideas are shared with the rest of the
community. The other researchers then use that
information to help build their independent cases.

When researchers with opposing views get
together, they may discuss how their works differ
and offer opinions based on the published research
done by each. The Euclid system supports this
style of collaboration by allowing users to work
independently and then build upon the argument
over long periods of time.

A group of researchers may be working on their
arguments for months, and when they meet or
when they communicate through their computers,

they can merge their arguments
effortlessly using Euclid. The system allows
participants to work independently to construct
their own ideas while sharing their work in the
long–term process of academic research.

1.3. Euclid

This paper is mostly a linearized version of an
argument which was developed using Euclid. The
argument will try to gain adherence of various
claims which essentially state that the Euclid
system is useful and could eventually influence

how people develop arguments in the future.

Since this paper is written sequentially, we needed
to create an ordering which attempts to make the
argument readable to at least some of the
audience. Section 2 presents some background
information about the underlying principles that
Euclid uses. Next, section 3 talks about the design
of the program and issues that were involved with
the design. Section 4 discusses how the
application can be used for practical purposes.
That section also contains examples of some
arguments which were created and analyzed using
Euclid. Finally, section 5 addresses some future
directions for the project.

2. Concepts

There are many concepts which Euclid addresses,
some of which are discussed here. The entire
system concerns augmenting the process of

working with reasoned
discourse, so we discuss reasoning
and its relation to Euclid. This section then gives
some more details regarding the use of hypertext
and collaboration and their significance to the
Euclid system.

Some features of the Euclid program are discussed
because they are concepts which need to be

defined. The typing of objects, the

definition of sources of the information
in the objects, and the three primary data types
are discussed in some detail here.

Finally, this section addresses the two document
types which contain all of the data. The

database, which stores the objects

and their contents, and the display,
which presents the objects to users are described
and discussed.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 3

Page 4 Euclid: Supporting Collaborative Argumentation with Hypertext

2.1. About Reasoning

The primary goal of argumentation is adherence
(Perelman & Olbrecht–Tyteca, 1971). An author of
reasoned discourse is always attempting to
convince his audience of some conclusion. There
are many different styles of persuasion used by
authors. Appeals to emotions, confusion,
analogies, and deception are a few techniques
writers use (Rieke & Sillars, 1984; Walton, 1989).
Many of the techniques do not follow any logical
foundation even though the author may attempt to
convince his audience that the argument is logical.

In its purest form, a logical argument is like a
mathematical proof. In a proof, statements, called
theorems, are presented which have been proven
to be true. A proof uses logical deduction to ensure
that no new claim is made unless all supporting
statements are true and they conclude the new
one. The conclusion of a proof is undeniable if the
statements themselves are true and the conclusion
logically follows them.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 4

Page 5 Euclid: Supporting Collaborative Argumentation with Hypertext

In a natural language argument, a presenter
attempts to prove a conclusion by making
statements that prove its validity. If the argument

is proven by modus ponens, or
logical deduction more generally, then the
presenter stands to gain adherence from the
audience. If the argument is unclear or does not
provide support for its statements, then the
audience may be more likely to doubt its
conclusion. Many writers substitute strong
rhetoric when the argument lacks logic. Other
writers may have a solid logical argument but are
not eloquent enough to present it well. A critical
analysis of arguments from these two styles would
show that the logical argument is more substantial
despite its expressive shortcomings.

Some argue that strong rhetorical arguments are
as valid as strong logical ones. We are influenced
greatly by words because they can have subtle
psychological meanings and conjure deep
emotions. Some rhetorical arguments may have
more influence on their audience than good logical
ones, but once the logical structure has been
exposed, the logical one will continue to influence.

If an author writes an argument using Euclid, the
logic will be apparent to the reader. If the author
does not have a conclusive logical argument, then
writing it with this system will help the author see
this lack of logic as it supports the process of
making the argument more sound.

When a reader is trying to understand a written
argument, she may not be able to follow the logical
structure. If she imports the argument into Euclid,
the logical structure can become visible in the
multi–dimensional realm of hypertext. The process
of importing the argument can also give insights
into the organization of the document.

Arguments which use strong rhetoric or bold
claims are good candidates for Euclid analysis.
Often the bold claims are based on unproven
assumptions. When analyzing an argument using
Euclid, it becomes obvious to the reader when this
trap is made.

2.2. Hypertext

Many research and commercial systems address
the defining concepts of hypertext systems. All of
these systems implement atomic units which are
independent of each other. These units, which we

will call nodes, contain some
representation of information or knowledge.
Connections between these nodes give the
audience a method for traversing them

nonsequentially. Links may connect nodes
with each other in any order, and the author of the
document may assign the order arbitrarily. From
this point on, the various hypertext system designs
differ in some way.

Each hypertext system has its own method for
representing the nodes and connections, and many
have other fundamental data types. Hypercard,
originally from Apple Computer, Inc., uses the

card as its node. A card, which contains text,
pictures and sounds, may be connected to any
other card by way of a link assigned by the author.

A Link in Hypercard is represented as a go
to instruction in its scripting language (Apple
Computer, 1987).

By virtue of this form of linking, cards may only be
traversed by leaving the context of one card and
entering another. This form of data traversal

appears to the user as a mouse–eye
view of the data. The metaphor is that of a mouse
running through a maze where its only perspective
is of the walls currently surrounding it. In
Hypercard, the user is only able to see the data
from the context of the current card. Figure 1
illustrates the mouse–eye representation used by
Hypercard.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 5

Page 6 Euclid: Supporting Collaborative Argumentation with Hypertext

my stack
My Card 1

Card 2

My Card 2
This is some information on card 2. It doesn't
say anything interesting, but it is an example
of what hypertext knowledge might be like.

Figure 1. Hypercard navigation. The user clicks on a
button in one card and another card replaces the
original.

In contrast to the Hypercard style of navigation,
some hypertext systems, such as gIBIS (Conklin &
Begeman, 1988), allows users to see the structure

of the database through a birdseye
view. In this representation, the data may be
viewed from the context of the entire database.
Several nodes may be visible from the perspective
of a bird hovering over the database. Figure 2
shows a representation of the same two Hypercard
cards from a birdseye perspective.

In NoteCards, a hypertext system developed at
Xerox PARC, both of these representations may be
used (Halasz, 1988). When the user is looking at a
card, connections on the card may be used to
display other cards. The NoteCards system also
provides an overview mode of the nodes, called a
browser, which displays a spatial layout of the
cards. This spatial layout of nodes may be used to
organize data in an additional dimension; that of
visual orientation.

It has been observed that all of these organizations
are useful for different tasks (Marshall, Halasz,
Rogers, & Jannsen, 1991). If each node contains
large amounts of data with structure consisting of
simple relationships, then the mouse–eye view is
advantageous. A user manual, for example may
have a complete description of a program feature
within a single node. The links may be used to
connect related commands to the one in the
current context. As a programmatic description of
a system, this is practical. On the other hand, most
academic, journalistic and other written
documents are not structured this way.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 6

Page 7 Euclid: Supporting Collaborative Argumentation with Hypertext

My Card 1

Card 2

My Card 2
This is some information on card 2. It doesn't
say anything interesting, but it is an example
of what hypertext knowledge might be like.

my stack

Figure 2. If Hypercard had a birdseye perspective, it
might look like this. This type of perspective is
useful to browse large information stores where the
structure is important.

In academic writing, a thesis is proposed and
arguments are written to support it. The overall
structure of the information in the argument is of
great importance to its validity and ultimate
adherence. For this type of argumentation, it is
necessary to support the visualization of the
structure from an overview perspective. Euclid
Supports this style of hypertext interaction
because it is the most appropriate for aiding in the
development and understanding of reasoned
discourse.

2.3. All Objects Have Types

When a user is creating an argument in Euclid, he

assigns a type to every object. The three

fundamental types are Text
Objects, Relations and

Lists. All objects are based on one of these
types. Users define types in a hierarchy; each type

is associated with a set of parent types.
Figure 3 shows part of a typical type hierarchy for
each of the three basic types.

Text Object RelationList

StatementTerm Comment SupportsRefutes

ClaimDefinition Supports by AnalogyContradicts

Query Arg RelationArg Text Meta Text Section

Figure 3. A typical type hierarchy. The arrows
connect each type with its parent type. The top row
contains the fundamental types.

Definable types give users an extensible system
capable of representing any style of
argumentation. When an author introduces a new
object which does not match any of the existing
types, then he may define a new one to
accommodate it. An author may even create

meta–objects; objects that are

about the argument and are not part
of the argument.

Hierarchical types may be used for more or less
specificity of objects. Very specifically classified
objects are ones with types that are deep in the
hierarchy and less specific types are near the top.
If an author creates an object that fits well into a
very specific class of objects, then the type for a
deeply defined class can be used. If, on the other
hand, the author creates an object that does not
categorize as well, then a more primitive type can
be used.

Users use these types to follow the logic of an
argument. A reader can see clearly when a

claim is supporting another

claim or when a comment is

Euclid: Supporting Collaborative Argumentation with Hypertext Page 7

Page 8 Euclid: Supporting Collaborative Argumentation with Hypertext

about a definition. In addition to the user’s
perspective of the types, the program uses them as
its semantic interface to the argument.

Since the Euclid system does not implement
natural language understanding of the text
objects, the only information it has about the
argument is that of the structure. The user’s
interface to the computer’s representation of the
structure is through a query. The query takes
advantage of the hierarchy by searching for types
or sub–types.

2.4. The Source of Knowledge

An integral part of Euclid is the representation of

sources. Every object in the system
contains a source, which is the person or
perspective from which the object was made. In
many cases, the source is the user who is writing
the argument. This is not always the case.

Often writers make claims which are not from
their own perspective. For example, an author can
write a claim which she is opposed to in order to
build a case for why she is opposed to that
counter–claim. She can define that other source as
the “anti–me”, to represent general opposition to
her own ideas presented.

Composite sources can be created to represent
sources

Euclid: Supporting Collaborative Argumentation with Hypertext Page 8

Page 9 Euclid: Supporting Collaborative Argumentation with Hypertext

within sources. For instance, “Franklin said that
Jefferson said…” would represent something that
Jefferson did not necessarily say himself, but
rather something that Franklin said that Jefferson
said.

When an argument is created collaboratively, let’s
say by two opposed authors, the first set of claims
by each side may contain only objects with
themselves as the source, but when they see each
other’s claims, they may begin to make claims
which paraphrase each other. A paraphrase of
writing by another author could use that other
person as the source even though the creator of
the object was the opposing author.

Sources give readers a more complete perspective
on the arguments. They allow the reader to follow
some of the more intricate connections which
authors make.

2.5. Nodes Contain Content

In Euclid, as in other hypertext systems, a node
contains knowledge. In the current
implementation, only styled text is used. Future
versions should be able to have any representation
of content such as graphics, sound or animation. In
addition to the content, type, and source, the node
also remembers the user who created it, the time
it was created and the time it was last modified. A
name may be associated with every node as a label
for quick identification. Figure 4 shows what a text
node looks like in the display.

Figure 4. This is what a text object looks like. The
top bar contains the type; it can also contain
abbreviations for the creator and the source of the
claim. The second bar is a brief title for the object.
The rest of the object contains its content.

The information in a node may only be modified by
its creator. Some have suggested that the system
allow any user to edit nodes, or to provide access
privileges to various users, but that is not feasible

due to the nature of long–term collaboration. When
several users are editing a document with their
own copies of a database, if multiple users change
a single node, then there is no precise way to
reconstruct the complete database with consistent
data. The style of collaboration which Euclid
supports allows for participants to communicate
through mail, e-mail or computer networks, so
there may be no connection between the machines
directly to implement revision control.

Nodes created by the current user are called

native nodes and those made by other

users are called aliens. Even though only
one user may edit the contents of a node, any user
may manipulate the node as a whole. Users may
look at alien contents and make connections
between them regardless of who created them.
Users can extend arguments by displaying and
moving alien objects, and adding native ones to
connect to them through native relations.

If a user disagrees with the structure of an
argument, or wants to reconstruct the argument
with a different layout, that user may create a
display and connect the nodes differently than the
original author. The content of the alien nodes do
not need to be changed to do this.

Since the nodes are given types, they may hold
different types of information. One type of node

may contain meta–
information which refer to various
pieces of the argument. This are analogous to
post–it notes, but they are more powerful than
simple snippets of paper. Complete meta–
arguments can be created which discuss pieces of
the argument structure.

2.6. Relations Represent Structure

Relations share many properties of nodes. They,
too, are typed, have a creator, creation and
modification date and an optional name. Relations
do not contain content, but they do contain links.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 9

Page 10 Euclid: Supporting Collaborative Argumentation with Hypertext

Relations connect objects to each other and

provide a type to the connection. They own
links, which means they are used like a node which
connects several other nodes that give semantics
to the connections.

By connecting two objects, the user is making a
logical connection between them. These
connections are not limited to text objects.
Relations may be made between other relations,
text objects or list objects. For example, one user
may disagree about the structure that another
user made. That user may make a refutation
relation between her claim and the supporting
relation.

In figure 5, the relation has boxes at the ends of
the lines to represent the ownership of the lines. In
many cases this representation is redundant, but if
the line is connecting two relations, then without
these boxes the meaning of the line would be
ambiguous. For example, in figure 6A, X

supports Y and Z refutes the

supports relation as well as another
object, W. Figure 6B shows the exact same set of
objects and connections, but in this case the fact

that Z refutes W helps to

support Y. The owner of the line

between refutes and

supports changed and modified the
meaning of the argument.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 10

Page 11 Euclid: Supporting Collaborative Argumentation with Hypertext

Figure 5. A relation object contains information
about its connections. The small boxes at the ends of
the lines in the figure represent that this relation

owns these lines.

X

Supports

Y

Refutes

Z

W

X

Supports

Y

Refutes

Z

W

A.

B.

Figure 6. A: Z refutes W and the relation
from X to Y. B: Z refutes W, and this refutation helps
support Y.

2.7. Lists Create Complex Relations

Like relations, lists share many properties of
nodes. All the same attributes are associated with
lists, but where nodes contain text content and
relations contain links, lists contain ordered sets of
other objects.

Figure 7. A list object contains an ordered set of
pointers to objects.

A list object is used to group a set of objects. One
type of list object may group a set of claims made
in a written document, in the order in which they
appear in the paper. Lists are ordered sets of
objects which associate the objects to each other
in some way through its type. The members of lists
are not limited to nodes and may contain relations,
text objects or other lists. Figure 7 illustrates a list
object in the display.

Several operations may be performed on lists and
we are continually finding very useful applications
for them. Lists may be created by selecting a set of
objects and then creating a list which contains
them. The order of the list can be changed by the
user by direct manipulation. This pair of
operations allows users to maintain a linear form
of the argument within the hypertext document.
This linear form of the argument can be
manipulated as a whole, or pieces of it can be
revealed by selecting portions of the list.

In the sense of linearization, the list object can act
as an agent between the logical layout and the
sequential version of the argument. A user can

invoke the copy command on a list, and then

paste the list into a text editor. This
operation exports the text of the list members from
Euclid into other programs in the order of the
objects in the list.

Lists provide a means of representing a portion of
an argument in a single structure. A set of objects
can be transformed into a list object. Other objects
can be related to the list in the same way that
objects are related to each other. This method can
be used to support a section of argument, or for a
conjunction of objects to support another claim.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 11

Page 12 Euclid: Supporting Collaborative Argumentation with Hypertext

The query operation creates a list containing its
results. A user can perform a query which requests
all objects created by a particular user, for
example, and receive a list of the matching
objects. Once a list is present, further queries can
be performed on it to find a specific subset. A
second query may solicit objects from the first list
that match additional criteria. The query options
are shown in figure 8.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 12

Page 13 Euclid: Supporting Collaborative Argumentation with Hypertext

Figure 8. A query finds any objects in the database
that match various attributes.

We first introduced list objects in the current
version of the system, so we are still developing
useful applications for them. We believe they are a
very powerful data construct which can be used in
many different situations.

2.8. The Database Stores Everything

Implicit in all hypertext systems is the concept of a
database. The database stores the knowledge that
is accessible from the displays. In Euclid, the
database is an independent system within the
environment. All of the data, types, users and
other information is stored in the database and
available for quick access. The only information
that the database lacks is display information for
objects.

Location, size and other display flags for objects
are stored in the displays, not in the database. This
is a vital separation for this system. This
separation of data and layout permits multiple
views of the data in separate windows
simultaneously. It also helps support the
collaborative aspect of the system.

Euclid supports collaboration in three ways. First,
the content of every object and type is

locked so that only the creator can modify
or delete it. Second, any time the content of an
object or the definition of a type are changed, the
database stamps the time on the object. Third,
databases may be merged into each other.

When a database is merged into another, the latest
versions of every object replace their earlier
versions. This allows users to merge the latest
version of their database with an earlier database
that was extended by another user. Since the
database does not contain any display information,
the same display files will continue to work with
the database, and objects which have new
relatives can be traversed to find the objects
added by the other user.

Euclid provides users with a database browser so
that the entire database may be viewed without
opening a display. This browser is not intended to
be used for reading or writing arguments, it simply
provides a crude method for accessing all objects
in the database. Future versions of the program
may have a more useful front–end for the
database.

2.9. Displays Are Layout Editors

The display is the primary editor and viewer for
the system. A display contains a graphical
representation of a subset of the database.
Displays contain pointers to objects in the
database with the addition of layout information
for each object. Since displays depend on a
database, they can only be used when the
matching database is open.

Since the database stores the information
autonomously, several displays may be created
which show various sets of objects from the
database. These displays automatically update
their objects when they are changed on different
displays. Moving and resizing of objects on one
display does not affect any other display. Many
other operations may be performed on objects in a

display which do affect the database, and

Euclid: Supporting Collaborative Argumentation with Hypertext Page 13

Page 14 Euclid: Supporting Collaborative Argumentation with Hypertext

therefore the other displays.

If a user deletes an object from the
database, then any representation of that object is
deleted from all displays. Any lines connected to
that object are also deleted. Alternatively, objects

may be hidden from a display. This does
not affect any other display, but it does remove the
selected objects from the current display. When
text objects are edited in a display, they will be
revised in the database and on all other displays
that show the objects.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 14

Page 15 Euclid: Supporting Collaborative Argumentation with Hypertext

Users may move objects between displays by

copying them from one and

pasting them into another. A user can
also copy and paste from the database browser to
a display. There are several other ways of
introducing hidden objects into displays.

A user can perform a query which creates a list
object on the display; then the list object can be
asked to show some or all of its members. Figure 8
contains the window that is used to form a query.

If a visible object is related to hidden objects, the
user can traverse its links to display its hidden
neighbors. See figure 9 for an illustration of a
hypertext traversal.

A:

B:

Figure 9. A: The left–arrow icon on this node
represents hidden connections to it. B: The relatives
of A were exposed by clicking on the link icon.

Each of the concepts discussed in this section

contribute to the design of the Euclid system. The
ideas from the area of argumentation helped shape
the design by providing background information
about how reasoning works. Hypertext systems
influenced the design of Euclid in several ways.

Hypertext supplied the basic idea of viewing the
text nonsequentially. It was also the inspiration for
the node/link model and the creation of separate
and distinct database and display systems.

We developed the typing scheme as a method for
enabling an extensible system in which various
forms of argumentation can be achieved. The
source information for objects gives users a
context in which to help understand the
background of objects.

3. Euclid Design

There are many components to the design of the
Euclid system. The complete design of the system
is beyond the scope of this paper, but we will
discuss some of the issues which were addressed
during the design process.

In addition to the concepts discussed in section 2,
we will discuss the design issues associated with
developing a collaborative system.

The program was written with an object–oriented
approach using a library of classes which handle
some of the general features of the user interface.
Euclid implements many subclasses from the
library and also defines some new abstract classes.
The communication between the various
components of the system are discussed here as
well so that the reader can begin to understand
some of the issues involved with connecting
independent components of a large system.

3.1. Collaborative Design Issues

When developing this system, it was originally
intended to be used only by a single user.
Eventually, we discovered that its usefulness grew
beyond that of a single–user application and was
ideal for collaboration. Several problems appeared
when we attempted to structure the database to
allow for collaborative operations. Problems arose

Euclid: Supporting Collaborative Argumentation with Hypertext Page 15

Page 16 Euclid: Supporting Collaborative Argumentation with Hypertext

in providing unique identifiers, object consistency
across remote databases, and type consistency.

3.1.1. Unique Identifiers

The identifier of objects needed to remain unique
across unconnected machines. It is impossible for
a machine to produce an identifier and guarantee
that no other machine has made the same one
without communicating with the others. We can,
however, make an identifier that is unlikely to have
been replicated on another machine.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 16

Page 17 Euclid: Supporting Collaborative Argumentation with Hypertext

A random 32–bit number has over 4 billion
possibilities. If two instances of the program make
random numbers, the chances of their being the
same is one in 4 billion. If a thousand entities are
created independently with 32–bit identifiers, the
chances are approximately one in 10 thousand that
two of the numbers will be the same. This seemed
improbable enough for objects which are not
numerous in the system. Types, users and sources
are given a 32–bit identifier because there are few
of each of these entities.

Databases can grow rather large, containing
thousands of objects. To create unique identifiers
for instances of database objects, the creator’s
identifier is concatenated to a new random 32–bit
number. When a user creates a new object, a new
identifier is issued which has not already been
issued to that user. This uniqueness can be verified
within the same machine assuming that only one
instance of each user exists. This guarantees that
no two objects can have the same identifier as long
as no two users have the same identifier.

Of course the seeding of the random is the
weakest link. The current implementation seeds
the random number generator with the time that
the program was launched. This method may be
improved for future version.

3.1.2. Object and Type Consistency

The problem of object consistency is addressed by
stamping every object with their latest
modification time. When a database is merged into
another, all objects which already exist are
compared with the new ones being merged in. The
newer of the two replaces the older one.

If a user deletes an object from a database that
has already been merged with another database,
then the object will reappear when the database is
merged back. In other words, once a user releases
his claims to other users, they can never be
deleted. The best he can do is make another
statement which withdraws his previous claim.
This is analogous to an authors publication of a
paper which she later realizes is not valid. She
may not take every copy of the paper away from
her readers and pretend that it was never written.
She can, however make a public statement

correcting the error.

A design feature which may not be completely
acceptable is the ability to modify claims. A user
may make a claim and then change its content,
and thus its meaning. It behooves authors to be
sure that editing of objects do not change their
meanings after other users have exchanged
databases. Another user may make statements and
connections which depend on the meaning of a
claim, but if the original author changes the text of
the statement, then the other user may have a
meaningless argument.

A similar problem is possible with types. When a
user defines a type, other users may use that type
to instantiate their own objects. If a user defines

supports and later changes the name

of the relation to refutes, then the entire
meaning of the database can change.

One way to correct these problems would be to
restrict editing after the database has been
distributed. This would eliminate the problem of
changing of meanings for objects and types once
other users have seen the database. The primary
problem with this approach, however, is that
typographical and other minor errors could not be
corrected. The other difficulty would be in
knowing when the user distributed the database.
As it stands now, a database can be transported at
any time as a file without any special operation.

3.2. Object-Oriented Design

Euclid was written for the Macintosh using Think
C by Symantec, a C implementation with object
extensions. The program makes use of the Think
Class Library, a library of code which implements
many of the mundane, low–level functionality of a
Macintosh program. The specific code for Euclid
takes up more than 55 classes of objects and more
than 800K of source code.

Since the program is behaviorally object–oriented,
it seemed natural to implement it with an object–
oriented approach. Using objects as abstractions
for the various entities made the programming

Euclid: Supporting Collaborative Argumentation with Hypertext Page 17

Page 18 Euclid: Supporting Collaborative Argumentation with Hypertext

process a smooth task. The data encapsulation of
the objects eased the implementation of the
separate data containers.

Two abstract classes that were defined for the

database system include a hash
table and a hash table
member. A hash table implements a
data structure which can access any of its
elements in almost constant time, provided that all
objects have unique identifiers. A hash table
member is a class which stores a unique identifier,
and, as such, can be stored in a hash table. The
unique identifiers which the program use are the
32 and 64–bit numbers discussed in section 3.1.1.
All object stores in Euclid are subclasses of the
hash table. The main database, the display
database, the type database and the user/source
database all depend on hash tables.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 18

Page 19 Euclid: Supporting Collaborative Argumentation with Hypertext

The implementation of line manipulation is an
issue which is not well documented in Macintosh
programming literature. It is easier to implement
objects of almost any shape as a region, but since
lines do not enclose a region, there are no
primitives to operate on them. The Euclid code
contains an object definition for handling lines. A
line basically consists of two endpoints. More
specific lines can connect two objects and have an
arrow at one end. A method for the line class
determines if a point is near the line so the
program can decide if the mouse cursor is on it.

3.3. Communication Between Objects

The Database contains all

Database Objects and the

Display Databases
contain the list of all Display
Objects for any given display document.
Every Display Database is dependent on a
Database. The program supports a method for
these various components to communicate.

The Think Class Library provides a framework for
dependencies between objects. One can define an

object of one class to depend on
another class. When an object performs an

operation, it can broadcast the event
to its dependents. It sends a message to all its
dependents, describing what changed and how it
changed.

These dependency links can be created between
almost any pair of objects. One could create a
dependency between every display object and its
respective database object, but the memory
overhead associated with having large numbers of
dependencies would be too great. For this reason,
the dependencies between the objects are
controlled by their containing objects: the

database and the display, not the individual
objects.

.

Display 1

Object 2

Object 3

Object 4

Database
Object 1
Object 2
Object 3
Object 4

Display 2

Object 1

Object 2

Display 3

Object 2

Object 4

Figure 10. The displays are dependent on the
database. When the database changes an object, it
broadcasts a message to all dependents. The
displays receive the message and update their
displays accordingly.

Figure 10 helps illustrate an example of a typical
transaction between the display and the database.
There are four types of objects represented in the
figure: a Database, three Display Databases, seven
Display Objects, and four Database Objects. There
are actually several other objects involved with
this scenario, but we will simplify the transaction
to the ones in the illustration.

A Display Object receives some action from the
user. It sends a message to its Display Database
with its object identifier. The Display Database
passes another message to the Database with the
same object identifier. The Database performs the
task on the Database Object and Broadcasts the
change. Each of the displays are Dependents of
the Database, so they receive the message that the
Database broadcasted. Each Display Database
then updates its objects accordingly.

3.4. Design Evolution

The Euclid system took several years to evolve,and

Euclid: Supporting Collaborative Argumentation with Hypertext Page 19

Page 20 Euclid: Supporting Collaborative Argumentation with Hypertext

it was not originally designed in its current form.
The first incarnations of the system were written
in Lisp on the Symbolics Lisp workstation using
Flavors, a predecessor to the Common Lisp Object
System (CLOS). In the past three years, it has
been redesigned and implemented for the
Macintosh.

The Symbolics versions had two components that
were omitted from the Macintosh version: a
constraint satisfier (Smolensky, Bell, Fox, King, &
Lewis, 1987a) and an Argument Representation
Language (ARL) (Smolensky, Fox, King, & Lewis,
1987b).

The constraint system was used for distributing
the layout of the objects based on their
relationships. This was a very processor–intensive
task and was eliminated in favor or direct user
manipulation of the objects. This is discussed
further in section 4.2.1.

The program used ARL, the Argument
Representation Language, as a formal language to
express the argument. An ARL expression consists
of a section of the argument.

Supports(A, B) would be an
expression which is represented as object A
supporting B, or graphically as two objects with a

supports relation between them. The
current version of the program implements a
database which is analogous to ARL, and can
express most of the same structures, but it is not
represented in a formal language. Since ARL is a
formal language, it is able to express more
complex structures.

In ARL, sources, claims, and expressions were
manipulated and passed as parameters to complex
relations. A complex relation can define composite
structures such as:

Euclid: Supporting Collaborative Argumentation with Hypertext Page 20

Page 21 Euclid: Supporting Collaborative Argumentation with Hypertext

strong_misrepresentation(X, Y, cl) :=
asserts(X, asserts(Y, cl)) &
asserts(Y, not(cl))

In this example, a ternary relation is defined
between two sources and a claim. If source X
strongly misrepresents source Y, then he asserts
that Y asserts a claim, but Y actually asserts some
other claim.

In the Lisp implementation, ARL was practical and
useful, but in the C version, supporting ARL would
have been a very difficult task. Perhaps future
versions of the program can include ARL as a
formal representation of the arguments.

4. Using Euclid

This section gives some suggestions for using
Euclid. The system may be used for a broad range
of applications, but here we discuss the
applications of the program that address the
primary goals of the project. Every researcher
must read and write reasoned discourse as part of
her work. Conference papers, theses, and
technical reports are all forms of reasoning. Some
of these papers are written alone, others are
written by groups of people. Euclid supports both
ways of writing arguments and it helps an
individual understand the discourse written by
various authors.

4.1. Reading and Analyzing Argumentation

4.1.1. Structuring a Written Argument

When analyzing a written document, the user may
use any method that makes the task easy and
productive. This section discusses some
approaches to argument analysis that Euclid
supports well.

Some research has suggested that the Toulmin
structure (Toulmin, 1958) can clarify logical
structure. This structure is a standardized set of
conventions for representing arguments formally
(Jarczyk, Löffler, & Shipman, 1992). Using Toulmin
structure, the reader follows a standard structure
which divides the argument into a specific set of
components.

Figure 11 illustrates a small segment of an
argument using the Toulmin structure in Euclid.
The Toulmin structure forces all arguments to fit

into this type of structure. A datum
supports a claim, and the

warrant supports the connection
between the two. Additional elements may be

entered as well. For example, backing
can support the datum, and a rebuttal
may refute the claim (Rieke & Sillars, 1984).

Euclid: Supporting Collaborative Argumentation with Hypertext Page 21

Page 22 Euclid: Supporting Collaborative Argumentation with Hypertext
WarrantEuclid supports spatial

layout of arguments.ClaimEuclid augments the
process of analyzing
arguments.

DatumSpatial layout of an
argument is easier to
visualize than
sequential text.

Figure 11. Toulmin has a well–defined set of
conventions for representing arguments.

Figure 12. Euclid permits informal representations
of structure.

Using Toulmin for argument structure is analogous
to sentence diagramming. Some components of a
sentence are its subject, object and verb. Using
this structure to break down sentences allows the
reader to verify that the sentence follows the
standard structure. The Toulmin structure forces a
certain level of granularity to the argument. Each
statement must satisfy the conditions for its role.

The role of the warrant is that of a predicate
which, when satisfied by the datum, establishes
the claim. The warrant must be contained in a
single cell, limiting the granularity of the cell.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 22

Page 23 Euclid: Supporting Collaborative Argumentation with Hypertext

The task of representing every component of an
argument in the Toulmin form can be very tedious.
When the argument is completely represented
using this structure, it may also be lacking various
pieces of the original document (Marshall, et al.,
1991). Elaborations of the objects can be omitted,
meta–comments about the structure might not be
represented, and various other statements that do
not directly lead to the conclusions will be missing.

Since Toulmin’s formalized structure is limited by
its granularity and its rigidity, an extensible
system, which allows less formal connections is
necessary. Euclid allows the definition of various
types to accommodate the Toulmin style, but is
also able to represent informal relationships.

A less formal representation of the argument
segment in figure 11 is shown in figure 12. In this
illustration, there is an additional supporting claim
and an elaboration of that claim. When a user is
performing an analysis with Euclid, this informal
structure can make evolutionary changes. The
analyzer might have the impression that one
structure is logical, but then decide that a different
structure would be more appropriate. This
flexibility is advantageous when working with a
large document.

As the reader is scanning a document, a high–level
representation of the argument might be created,
but when the contents of the individual sections
are understood, the overall structure might
change. Using Euclid, the user can make this
change readily.

Quote

The complete document

Matter occupies space and has weight. It is not always necessarily seen, since
certain gasses and even the air which you breathe, are also classified as "matter."

Until recently, scientists talked of the law of "conservation of matter." However,
with the discoveries in nuclear physics, and following Madame Curie's
experiments with radium, scientists have now found there is a certain amount of
"disintegration" in matter!

This deterioration of radioactive matter is a scientific fact! Uranium (U 238)
gradually disintegrates through many intermediate stages into lead (Pb 206).
Uranium, as you may well know, is radioactive and gives off energy in the form
of radiation.

Gradually, over a period of seemingly limitless years, this radioactive material
disintegrates into lead! There is no new uranium coming into existence today!

This means, simply stated, that science has proved that this earth is gradually
running down!

Science has firmly established, then, there has been no past eternity of matter!

Matter must at one time have come into existence! Since matter by its very nature
has no past eternity, it had to have been, at one time, brought into existence!

Creation then, the very existence of things, absolutely demands and requires a
Creator! That which is made requires a Maker! That which is produced requires a
Producer!

Matter, it has been firmly established, has been made - it did not "happen" and
has no past eternity! Therefore here is irrefutable proof that all creation requires a
great Creator!

Figure 13. A small, complete argument.1

4.1.2. How to Perform an Analysis

When a reader wants to analyze a written
document, he needs to import it into the Euclid
system. Once it is in the Euclid format, he can
manipulate and arrange the claims so that the
implicit logic becomes explicit. He can follow
several steps to transform the sequential claims
into a network of claims.

The user can begin by creating a statement or

defining a type, quote, which contains the
exact text of the original document. The

source of the object needs to be the
source of the document; either the person who
wrote it or a reference to the document will
suffice. The first quote will contain the first
statement in the document. If the first sentence

makes a single statement, then it can be used as
the first claim in the argument. If the first phrase
of the first sentence or the entire first paragraph

1From Bible Study instructional material published by Ambassador College (Pasadena, California)

Euclid: Supporting Collaborative Argumentation with Hypertext Page 23

Page 24 Euclid: Supporting Collaborative Argumentation with Hypertext

make a single claim, then they can be used.
The user can enter the text either by copying it
from another file and pasting it into the text
objects, or he can type it in.

After a few claims are entered, or when the entire
document is entered, the user may begin the
analysis of the argument. This process is similar to
the brainstorming process that writers use. They
dump many ideas and then try to make a logical
argument out of them. In an argument that already
exists, the reader attempts to perform a similar
task with the author’s ideas.

In the following example, we perform an analysis
of a brief document.

Figure 13 contains the complete document which
we will be analyzing. The first step in making an
analysis is to import the document. In this figure,
we simply copied the entire text and pasted it into
a single text object in Euclid. This operation can
also be performed by copying each claim
individually and pasting them into their respective
text objects. Having the entire text in a single
object is only useful here so that the reader can
see the full text in one place. The user of the
system will still need to separate the statements
for the analysis.

The next step in analyzing the document is to sort
out the statements to find which ones are related
to which others. The reader may hide some of the
statements which are not useful for her level of
analysis. The user

Euclid: Supporting Collaborative Argumentation with Hypertext Page 24

Page 25 Euclid: Supporting Collaborative Argumentation with Hypertext

may move related claims near each other in the
display and group them in order of logical flow.
Once some of the connections become clear, she
may connect the objects to each other using the
relations that seem appropriate to the structure of
the argument.

Once all the objects are connected to each other,
an analysis may be performed. Figure 14 shows a
complete representation of the argument. With
this representation, the reader may look for flaws
in the argument. Sometimes relations are made
because the reader believes the author had
intended for the connection to be made. When the
connection is not obvious, the analyzer can add
elaboration of the relations, describing why she
thought it belonged there.

While the reader is following the flow of the
argument, implicit assumptions may be found to
complete the argument. The reader can make
these assumptions explicit for future readers of the
argument. In figure 15, the reader describes why a
set of claims support another claim by stating an
assumption.

The analyzer may continue to work with the
argument by adding more supporting or refuting
claims to any part of it. One might refute the
assumption, for example, by questioning if the
assumption is a valid one. A refutation of a claim
may invalidate the claim and weaken the overall
argument. Euclid will not decide for the readers if
the arguments are valid or not, but Euclid can help
the readers decide for themselves.

Quote

Figure 14. An analysis of the argument. This does
not contain the entire text because the analyzer
decided not to show the elaborations in this display.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 25

Page 26 Euclid: Supporting Collaborative Argumentation with Hypertext

Quote

Figure 15. The analyzer adds an assumption which
is not explicitly in the text.

4.2. Writing Arguments

When creating a document, users may follow any
number of steps. Some authors begin their writing
process by writing an outline, then for each
section, a set of subsections are outlined. This
process is repeated until the body of the paper
develops from the outline.

Other writers begin by brainstorming sets of
complete ideas. They may write complete
paragraphs in random

Euclid: Supporting Collaborative Argumentation with Hypertext Page 26

Page 27 Euclid: Supporting Collaborative Argumentation with Hypertext

order, and then sort them into a logical order,
adding connecting sentences to complete the
paper.

The Euclid system supports the writing process in
every stage. It supports the initial brainstorming of
ideas, then it augments transition from disjoint
ideas into logical structure. When a complete
argument is constructed, Euclid then helps the
author transfer the logical structure into the
linear, written form.

If the author prefers to outline and then specify, a
similar process can be used. As ideas are created,
they may be immediately moved near related
objects in an outline form.

4.2.1. Brainstorming

When brainstorming, we are primarily concerned
with expressing as many ideas as possible in as
little time as possible. Our minds are filled with
thoughts and we want to spill them out and record
them so that we will not forget them. We are not
concerned with making logical arguments at this

stage, but we can follow our train of
thought while ideas appear mentally.

At this point, it is very important to have complete
control over the placement of the objects. We may
think of several claims very quickly and have a
vague idea of which other objects they relate to.
Using Euclid, we can immediately move these
thoughts near other, similar or otherwise related
objects. New objects which have little relationship
with the rest of the network can be placed in a
vacant area.

StatementIt supports the brainstorming process.StatementEuclid is a useful system.StatementIt helps authors write.StatementIt helps readers understand the result.StatementIt helps collaborators communicate.

Figure 16. In this example, the user begins the
brainstorming process by creating some random
statements.

StatementEuclid is a useful system.StatementBrainstorming to logical structure is easier.StatementThe logic is easy to follow.StatementValidity of the argument is easy to determine.StatementIt helps readers understand the result.StatementIt helps collaborators communicate.StatementIt helps authors write.StatementIt supports the brainstorming process.

Figure 17. Here, the author begins to group some of
the ideas spatially while adding more statements.

Euclid supports brainstorming in two ways. First,
it gives the user complete control over creation
and layout of objects. Second, the program does
not require explicit relations to be present at all
times.

Users utilize direct manipulation to move the
objects in the display. This unconstrained layout
allows the use of spatial relations for the initial
grouping of ideas. Unrelated concepts can be
placed in different areas of the page or in separate
displays.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 27

Page 28 Euclid: Supporting Collaborative Argumentation with Hypertext

In earlier versions of this project, Euclid had the
feature of constraint–based layout. Whenever a
relation was created between two objects, a
supposedly useful spatial relationship was created
between the objects. For example, if X

supports Y, the object X will appear
just below object Y. When objects were not
explicitly related, there was no support for
automatic layout (Bernstein, Smolensky, & Bell,
1989; Smolensky, et al., 1987a).

Users of the earlier program complained that they
preferred to place the objects where they wanted,
and could usually find a better layout than the
program could. In addition to the objections to
constraint–based layout, the cost of satisfying the
constraints was extremely high computationally, so
this feature was abandoned.

This direct–manipulation approach to layout is
important for the initial phase of quickly
presenting thoughts into the system. Once a few of
the thoughts are entered, the user may need to
begin developing some higher–level semantics to
the disparate ideas. Fortunately, the user is not
forced to do that for each object while it is being
created.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 28

Page 29 Euclid: Supporting Collaborative Argumentation with Hypertext

Some hypertext systems require explicit links
between objects before their connections can be of
any value. In Euclid, as in NoteCards and gIBIS,
objects can be unrelated through the semantics of
the program, yet still have a visual relationship by
way of their proximity to each other.

Since the system does not constrain the user by
demanding that the structure be present, he may
brainstorm by creating disjoint ideas. These ideas
can be organized visually in a display so that
vaguely related ideas can be distributed near each
other. This supports the beginning of the
incremental transition from autonomous thoughts
into more complex arguments.

The first stage of brainstorming is the dumping of
ideas. In Figure 16, the user has created some
statements which should eventually get related to
each other or to other objects. At this point, the
user is not concerned with the connections, but
rather with the recording of the ideas.

In the next stage (figure 17), the user begins to
group the disparate ideas so that they can be
found when the relations are added. Some
relations may be created while more ideas are still
added to the database.

In this case, some more ideas were entered after
some of the grouping was performed.

In the third stage of brainstorming (figure 18), the
user specifies the links between the objects. The
new objects were sorted out and connected to
their appropriate sections in the argument. This
stage is also the beginning of the structuring task.

StatementEuclid is a useful system.StatementIt helps readers understand the result.SupportsStatementThe logic is easy to follow.SupportsStatementIt supports the brainstorming process.StatementBrainstorming to logical structure is easier.Supports StatementValidity of the argument is easy to determine.StatementIt helps collaborators communicate.StatementIt helps authors write.

Figure 18. Finally, the writer connects the
statements to each other.

4.2.2. Ideas into Structure

There is no tangible separation in time between
brainstorming and structuring. The user is always
brainstorming, in a sense, in order to add the
details to the basic ideas. Since the structuring
phase is at a different conceptual level, it will be
discussed as a separate phase.

After some brainstorming, which may be done as
the first step in creating an argument, or when
adding details to another idea, the user will then
begin the phase of structuring the argument. In
adding structure to independent claims, users
need support in at least two areas. Authors need a
simple way to relate the autonomous objects, and
they need to know where new objects need to be
connected to the existing structure.

Creating Relations

Relations are supported as strongly as the text
objects. They hold the same internal structure as

Euclid: Supporting Collaborative Argumentation with Hypertext Page 29

Page 30 Euclid: Supporting Collaborative Argumentation with Hypertext

the text objects, but instead of a text content, they
contain connections. A relation is a node object
which connects a set of other objects, the other
objects may be text objects, other relations or list
objects. Relations are extremely useful constructs
when the user takes advantage of them.

Since relations have types, the objects may be
connected in various ways. The author may

connect objects with a supports
relation, or define any other type such as

elaborates for a statement which
further explains another object.

After several statements have been entered into
the system, the user may begin the process of
creating explicit relations between them. This next
phase of argument construction is not modal and
is often done intermittently while the ideas are
being constructed. While brainstorming, a user
may create a few claims, and then group them
spatially according to their topics. When the user
has a sufficient group of related claims, she may
see some obvious connections between them.
Perhaps one claim supports another, or one is the
definition of another.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 30

Page 31 Euclid: Supporting Collaborative Argumentation with Hypertext

At this point, the user will connect the related
objects. A claim may be connected to another
which it is supporting. Another statement may
elaborate on a claim. Maybe a set of claims
support a single statement. There may be a
connection between two objects which the author
does not yet know how to classify. Such
connections may take on a generic relation which
can be specified at a later time. If the type of
connection is known but not defined, then the user
may define it at that time.

As the user is creating connections, she may also
find that some of the text objects may need more
specific types. Something defined as a statement
may be more appropriately defined as a claim or a
definition. If the system does not have a type that
is applicable, then the user may define new types.
Types may be defined at any time or the user can
always use a generic type until a more descriptive
one can be established.

While the author is making connections, he might
need to alter the layout of the objects. The author
may find a spatial layout which reflects the logical
structure better than the original, or he may want
to accommodate the new relations with more
space for the connecting lines.

Eventually, all the claims will be connected to each
other, and a network will have been created. The
user can now use the structure thus far to
determine where to add more claims.

Adding More Claims

With a partially complete network, an author can
find more information about the argument than
she originally put in. The visual and internal
representation of the argument can help the
author determine how to continue to support the
case. There are three methods the author can use
to find areas which need more support. She may
perform a query to find unsupported claims, she

can look through the network to find leaf
nodes, or she might look for claims which have
weak support.

Performing a query, the user can find all claims

which are not supported. If the network was
constructed in such a way that the bulk of the
argument is made out of claims, then such a query
would be useful. By looking at all unsupported
claims, the author can decide which ones need
further support and which others are strong
enough to stand by themselves.

In order to find other types of objects for further
elaboration, the user can simply query or look for

nodes which are connected to other nodes, but

not from others. These nodes, called

leaf nodes, are the text objects which need to
be self–explanatory. If there is a leaf in the
network which can not stand on its own merit,
then it most likely requires further explanation or
support.

Unfortunately, one can not determine the entire
meaning of a Euclid argument simply by looking at
the nodes and connections. Throughout the
analysis process, the user will need to actually
read the contents of the nodes to understand the
gist of the argument. With this in mind, one can
realize that the only way to fully support an
argument is to have substantial claims. If a claim
is supported by other claims which are weak, then
the author must continue to strengthen the
supporters or add more resolute claims to the
argument.

Overall Structuring

When an author writes an argument using Euclid,
she should separate ideas and have clear
connections between them. The system can not
enforce this rule, but arguments which are written
with this convention are more clear to their
readers. When adding statements to an argument,
one can fall into a few traps.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 31

Page 32 Euclid: Supporting Collaborative Argumentation with Hypertext

Supports|bgb;BGB:

Claim|bgb;BGB:

The Macintosh operating system is significantly
better than Windows. The operating system is
seemlessly integrated with the hardware.
Applications have a consistent interface and
networking is virtually transparent.

Claim|bgb;BGB:

Apple has a very good Networking Systems
Development group.

Figure 19. An example of a small argument which
does not individualize its claims and is accordingly
not clear. The supporting claim in this example
supports only part of the main claim.

The author may wish to support a statement that
contains a conjunction of ideas: perhaps it is
several sentences with different claims. Any
relation connected to this statement would be
ambiguous since a relation can only connect to a
complete object.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 32

Page 33 Euclid: Supporting Collaborative Argumentation with Hypertext

Supporting only a part of the object would make
the structure difficult to follow from the reader’s
perspective. Figure 19 illustrates an ambiguous
connection between two claims.

Conversely, the author might make partial
statements in order to have small independent
sub–claims for each piece of an issue. If the
granularity of the objects is too small, the reader
would have the arduous task of sorting out enough
claims to make a single comprehensible sentence.
Both of these cases are burdensome to the reader;
and remember, the author is usually the first
reader.

When the author is reading through his argument,
the logic should be straightforward. Consequently,
lack of logic is equally clear. Euclid encourages
writers to clarify and justify claims by making lack
of logic obvious, especially to the author. When the
author notices that something is lacking, he can
add more claims to strengthen the argument.

In conventional writing, several ideas can be
contained in the same paragraph or section, but
the author may not realize that the statements
which are supporting one part of a paragraph are
not related to the rest of it. It is likely that the
author will abandon some important claims
without fully supporting them. A claim which may
be very valuable to an argument can become
orphaned and consequently vulnerable to critical
readers. When writing in Euclid, it is very difficult
to miss orphaned claims. If an author creates a
claim which is not directly related to claims
nearby, then it will stand out as the only claim
without connections.

An author needs to be careful to have cogent
arguments at all levels so that the reader can be
persuaded that all parts of the argument are
conclusive. It is easy for a person to write an
argument with the assumption that the audience
agrees with some obvious claims. Using Euclid,
each claim stands out independently from the rest
of the argument, so the author may take more time
to be sure if claims may or may not be taken for
granted. The author can read the claim, perhaps
as an unsupported entity, and determine if it can
remain an independent idea or if it needs further
support.

4.2.3. Linearizing Structure

Once the logical structure of an argument has
been constructed using Euclid, the linear form
may be created by forming a reasonable order to
the objects. List objects may contain the
linearization of the argument. Objects may be
added to a list object by moving them into it, and
then the order of the list’s members may be
changed.

When the user is ready to export the complete
argument, the list containing the whole argument
or a linearized section of the argument may be
copied as a whole, and pasted into a word
processor.

Euclid supports copy and paste in several forms.
Copying a group of objects from a display may
result in:

• paste of the same objects and internal lines
into another display.

• paste of the picture of the structure into
another application.

• paste of the text of the objects into another
application.

Using this copy/paste interface between Euclid
and a word processor, an author can transform the
logical, network structure of the argument into the
sequential, written form.

5. Future Directions

We have been using Euclid extensively in our
everyday work with some excellent results. Having
gained some expertise in the use of the program,
we have discovered some shortcomings which can
be solved with some additions to the system.

If list objects had the ability to store layout
information, then they could be used as iconic
representations of sections of displays. In the
current state, when a segment of an argument is
stored in a list, the expansion of the list is poorly
layed out, and is not a structure that the user
created.

The program implements styleable text for the
object contents. A useful feature would be to allow

Euclid: Supporting Collaborative Argumentation with Hypertext Page 33

Page 34 Euclid: Supporting Collaborative Argumentation with Hypertext

pictures, or other data types to be stored in the
objects as well. Since Euclid supports the idea of
graphical representation to help visualize ideas, it
would be fitting for the program to support
additional graphical entities.

While creating large displays, we have found that
the screen eventually becomes a tangled

spider web of lines and nodes. One
reason for this is that for every relation, there are
at least two lines; one entering the relation, and
another exiting it. If we had a method for making
direct links between objects, it might reduce the
clutter. A representation of relations where the
line color or pattern represents the type of
connection could be a feasible solution.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 34

Page 35 Euclid: Supporting Collaborative Argumentation with Hypertext

A future version of the system needs to have
network support. When a standardized store–and–
forward messaging protocol becomes available on
the Macintosh, this application would be a very
good candidate to take advantage of it.

6. Conclusions

This paper was written with the help of the Euclid
system. The author wrote the initial argument by
brainstorming ideas and incrementally developing
the structure. His advisor was able to understand
the logical connections clearly and made meta–
comments relating to the exact locations of the
problems in the argument. The advisor added
comments and corrections while the student
continued to work on the same database. After the
author merged the comments back into the his
database, he was able to discuss the argument at
the meta level while expanding the primary
argument. This collaboration was very successful.

We are convinced from our own experience that
Euclid is a powerful system, but now we need to
determine how useful it is to the general public.
We are currently developing tests to study the
actual effectiveness of the system. Several
experiments will be performed to investigate the
success of Euclid for different applications.

The system exceeded our expectations in several
ways. It enhanced our ability to construct clear,
concise arguments, and it improved our
collaborative effort by serving as a platform on
which to discuss the argument effectively. We hope
to convince our audience that Euclid can be a
beneficial tool for all who read or write reasoned
discourse.

Acknowledgments

I would like to thank Paul Smolensky, my advisor
for all the time and effort he has put into the
development of the program and this paper. The
original concepts of the system were developed by
Paul Smolensky, Barbara Fox, Roger King, and
Clayton Lewis in 1986. Other contributors to the
evolution of the project include Charles Hair,
Brigham Bell, and Elizabeth O’Dowd. Additional
thanks are extended to: Apple Computer, Inc. who

helped give me the power to
be my best (funding and
equipment); The National Science Foundation, for
grant IST–8609599; and Symbolics, Inc.

References

Apple Computer, I. (1987).

Hypercard User’s
Guide. Cupertino, CA: Addison–Wesley.

Bernstein, B., Smolensky, P., & Bell, B. (1989).
Design of a Constraint–Based Hypertext System to

Augment Human Reasoning. In 4th
Annual Rocky
Mountain
Conference on
Artificial Intelligence,
(pp. 21-30). Denver, CO.

Conklin, J., & Begeman, M. L. (1988). gIBIS: A
Hypertext Tool for Exploratory Policy Discussions.

ACM Trans. Office
Information Systems,

6(4), 303-331.

Halasz, F. G. (1988). Reflections on NoteCards:
Seven Issues for the Next Generation of
Hypermedia Systems.

Communications of
the ACM, 31(7), 836-852.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 35

Page 36 Euclid: Supporting Collaborative Argumentation with Hypertext

Jarczyk, A. P. J., Löffler, P., & Shipman, F. M., III
(1992). Design Rationale for Software

Engineering: A Survey. In Hawaii
International
Conference on
System Sciences, Hawaii.

Marshall, C. C., Halasz, F. G., Rogers, R. A., &
Jannsen, W. C., Jr. (1991). Aquanet: a Hypertext
Tool to Hold your Knowledge in Place. In

Hypertext ‘91, (pp. 261-275).

Nielsen, J. (1990). Hypertext
and Hypermedia. San
Diego, CA: Academic Press, Inc.

Perelman, C., & Olbrecht–Tyteca, L. (1971).

The New Rhetoric. Notre
Dame, Indiana: University of Notre Dame Press.

Rieke, R. D., & Sillars, M. O. (1984).

Argumentation and
the Decision Making
Process (2 ed.). Glenview, IL: Scott,
Foresman and Company.

Schrage, M. (1990). Shared
Minds: the New
Technologies of

Collaboration. New York:
Random House.

Smolensky, P., Bell, B., Fox, B., King, R., & Lewis,
C. (1987a). Constraint–Based Hypertext for

Argumentation. In Hypertext
‘87.

Smolensky, P., Fox, B., King, R., & Lewis, C.
(1987b). Computer–Aided Reasoned Discourse, or
How to Argue with a Computer. In R. Guindon

(Eds.), Cognitive Science
and its Implications
for Human–
Computer
Interaction Hillsdale, NJ: Lawrence
Erlbaum.

Toulmin, S. (Ed.). (1958). The Uses
of Argument. Cambridge, UK:
Cambridge University Press.

Walton, D. N. (1989). Informal
Logic: A Handbook
for Critical
Argumentation. Cambridge:
Cambridge University Press.

Euclid: Supporting Collaborative Argumentation with Hypertext Page 36

